Abstract

Depletion of central nervous system catecholamines, including dopamine, can decrease MAC (the minimum alveolar concentration of an inhaled anesthetic required to suppress movement in response to a noxious stimulus in 50% of test subjects); release of central nervous system catecholamines, including dopamine, can increase MAC; and increased free dopamine concentrations in the striatum can decrease MAC. Such findings suggest that dopamine receptors might mediate part of the capacity of inhaled anesthetics to provide immobility in the face of noxious stimulation. We measured the effect of blockade of D2 dopamine-mediated transmission with 0.3 mg/kg or 3.0 mg/kg droperidol on the MAC of cyclopropane, desflurane, halothane, isoflurane, or sevoflurane in rats, and the effect of 3.0 mg/kg droperidol on the dose or concentration of etomidate (an anesthetic known to act principally by enhancing the response of gamma-aminobutyric acid(A) receptors to gamma-aminobutyric acid) required to suppress movement in response to noxious stimulation. Blockade of D2 dopamine-mediated transmission with droperidol does not decrease the MAC of cyclopropane, desflurane, halothane, isoflurane, or sevoflurane or its equivalent for etomidate in rats. These data, plus data from studies by others about D1 dopamine receptors, indicate that dopamine receptors do not mediate the immobility produced by inhaled anesthetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call