Abstract
The degree to which competition by dominant species shapes ecological communities remains a largely unresolved debate. In ants, unimodal dominance–richness relationships are common and suggest that dominant species, when very abundant, competitively exclude non-dominant species. However, few studies have investigated the underlying mechanisms by which dominant ants might affect coexistence and the maintenance of species richness. In this study, we first examined the relationship between the richness of non-dominant ant species and the abundance of a dominant ant species, Formica subsericea, among forest ant assemblages in the eastern US. This relationship was hump-shaped or not significant depending on the inclusion or exclusion of an influential observation. Moreover, we found only limited evidence that F. subsericea negatively affects the productivity or behavior of non-dominant ant species. For example, at the colony-level, the size and productivity of colonies of non-dominant ant species were not different when they were in close proximity to dominant ant nests than when they were away and, in fact, was associated with increased productivity in one species. Additionally, the number of foraging workers of only one non-dominant ant species was lower at food sources near than far from dominant F. subsericea nests, while the number of foragers of other species was not negatively affected. However, foraging activity of the non-dominant ant species was greater at night when F. subsericea was inactive, suggesting a potential mechanism by which some non-dominant species avoid interactions with competitively superior species. Gaining a mechanistic understanding of how patterns of community structure arise requires linking processes from colonies to communities. Our study suggests the negative effects of dominant ant species on non-dominant species may be offset by mechanisms promoting coexistence.
Highlights
Dominant species are those species that excel at exploiting and sequestering resources [1] thereby affecting the behavior and population dynamics of other species and potentially the structure of communities
We examined the relationship between ant species richness and the incidence of F. subsericea
Because it has been suggested that the species richness of non-dominants might be negatively related to the abundance of dominant ants only at high levels of dominance [4,5], we considered whether the relationship between the species richness of non-dominants and abundance of F. subsericea was best described by either a linear least squares regression or a polynomial regression
Summary
Dominant species are those species that excel at exploiting and sequestering resources [1] thereby affecting the behavior and population dynamics of other species and potentially the structure of communities. Janzen [2] and Connell [3] famously argued that if populations of dominant species were not kept in check by predators or parasites, they would become overabundant and exclude other species, leading to a decrease in species richness. In relation to this hypothesis, several studies have documented a unimodal relationship between the richness of species in a local community and the abundance of dominant species [4,5]. One approach for teasing apart these alternative explanations is to test predictions regarding the influence of competition with a dominant species across levels of organization, from individuals to entire communities
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.