Abstract

Different production environments are being adopted by farmers. Therefore, allocation of resources to breeding research that targets different production environments should be continuously assessed. Agronomists should conduct extensive hybrid × production environment interaction research before recommending breeders to conduct separate breeding programs for each production environment. The lack of interactions between genotypes and production environments (e.g., tillage) would not justify conducting separate breeding programs and duplicating breeding resources. On the other hand, separate breeding programs would be necessary if cultivar rankings differ. The purpose of this paper is to review the available literature on experiments designed to test genotype × tillage interactions (GT) in maize (Zeamays L.). No-till system (NT) and conventional till system (CT) were utilized as examples of different production environments. The majority of experiments reviewed showed that there is no need to develop cultivars specific to NT because the cultivars that were developed under CT systems performed relatively the same under NT. The magnitude of GT interactions found was very small to expect better cultivars from breeding under NT. Additional research is needed to confirm these conclusions, especially when applied to other production environments (e.g., development of cultivars under organic conditions). Scientists should evaluate genotype by tillage interactions before investing additional resources in breeding for those specific target environments. Top yielding genotypes seem be consistent across years, locations, inputs; and most of the present evidence suggests that breeding for specific till systems is not necessary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.