Abstract

Vast amounts of cultivars of native plants are annually introduced into the semi-natural range of their wild relatives for re-vegetation and restoration. As cultivars are often selected towards enhanced biomass production and might transfer these traits into wild relatives by hybridization, it is suggested that cultivars and the wild × cultivar hybrids are competitively superior to their wild relatives. The release of such varieties may therefore result in unintended changes in native vegetation. In this study we examined for two species frequently used in re-vegetation (Plantago lanceolata and Lotus corniculatus) whether cultivars and artificially generated intra-specific wild × cultivar hybrids may produce a higher vegetative and generative biomass than their wilds. For that purpose a competition experiment was conducted for two growing seasons in a common garden. Every plant type was growing (a.) alone, (b.) in pairwise combination with a similar plant type and (c.) in pairwise interaction with a different plant type. When competing with wilds cultivars of both species showed larger biomass production than their wilds in the first year only and hybrids showed larger biomass production than their wild relatives in both study years. As biomass production is an important factor determining fitness and competitive ability, we conclude that cultivars and hybrids are competitively superior their wild relatives. However, cultivars of both species experienced large fitness reductions (nearly complete mortality in L. corniculatus) due to local climatic conditions. We conclude that cultivars are good competitors only as long as they are not subjected to stressful environmental factors. As hybrids seemed to inherit both the ability to cope with the local climatic conditions from their wild parents as well as the enhanced competitive strength from their cultivars, we regard them as strong competitors and assume that they are able to outperform their wilds at least over the short-term.

Highlights

  • Vast amounts of cultivated varieties of native plants are annually introduced within the natural or seminatural range of their wild relatives for revegetation and restoration purposes

  • The large-scale replacement of wild plants by cultivars or hybrids of the same species is undesirable for the conservation of native plants’ biodiversity

  • In parts of northern Spain (Galicia) cultivars of Dactylis glomerata, which were introduced for hay production in the 1970’s, and developed hybrids with their wilds seemed to displace the wild populations [4]

Read more

Summary

Introduction

Vast amounts of cultivated varieties of native plants (hereafter cultivars) are annually introduced within the natural or seminatural range of their wild relatives (hereafter wilds) for revegetation and restoration purposes. The introduced cultivars or the hybrids may replace their wilds [3]. Similar trends have been assumed for Lolium perenne in Britain [5] and L. multiflorum in Switzerland [6] as cultivars of these species have been introduced for several decades to improve grasslands. This kind of displacements of wild plant populations is known as cryptic invasion because cultivars, wilds and their hybrids are often difficult to distinguish from another and the invasion is not immediately detected [7], [8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call