Abstract

In contrast to studies of defects found during code review, we aim to clarify whether code review measures can explain the prevalence of post-release defects. We replicate McIntosh et al.’s (Empirical Softw. Engg. 21(5): 2146–2189, 2016) study that uses additive regression to model the relationship between defects and code reviews. To increase external validity, we apply the same methodology on a new software project. We discuss our findings with the first author of the original study, McIntosh. We then investigate how to reduce the impact of correlated predictors in the variable selection process and how to increase understanding of the inter-relationships among the predictors by employing Bayesian Network (BN) models. As in the original study, we use the same measures authors obtained for Qt project in the original study. We mine data from version control and issue tracker of Google Chrome and operationalize measures that are close analogs to the large collection of code, process, and code review measures used in the replicated the study. Both the data from the original study and the Chrome data showed high instability of the influence of code review measures on defects with the results being highly sensitive to variable selection procedure. Models without code review predictors had as good or better fit than those with review predictors. Replication, however, confirms with the bulk of prior work showing that prior defects, module size, and authorship have the strongest relationship to post-release defects. The application of BN models helped explain the observed instability by demonstrating that the review-related predictors do not affect post-release defects directly and showed indirect effects. For example, changes that have no review discussion tend to be associated with files that have had many prior defects which in turn increase the number of post-release defects. We hope that similar analyses of other software engineering techniques may also yield a more nuanced view of their impact. Our replication package including our data and scripts is publicly available (Krutauz et al. 2020).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.