Abstract
Many children fail to master fraction arithmetic even after years of instruction. A recent theory of fraction arithmetic (Braithwaite, Pyke, & Siegler, 2017) hypothesized that this poor learning of fraction arithmetic procedures reflects poor conceptual understanding of them. To test this hypothesis, we performed three experiments examining fourth to eighth graders' estimates of fraction sums. We found that roughly half of estimates of sums were smaller than the same child's estimate of one of the two addends in the problem. Moreover, children's estimates of fraction sums were no more accurate than if they had estimated each sum as the average of the smallest and largest possible response. This weak performance could not be attributed to poor mastery of arithmetic procedures, poor knowledge of individual fraction magnitudes, or general inability to estimate sums. These results suggest that a major source of difficulty in this domain is that many children's learning of fraction arithmetic procedures develops unconstrained by conceptual understanding of the procedures. Implications for education are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.