Abstract

AbstractThe life cycles of plants and animals are changing around the world in line with the predictions originated from hypotheses concerning the impact of global warming and climate change on biological systems. Commonly, the search for ecological mechanisms behind the observed changes in bird phenology has focused on the analysis of climatic patterns from the species breeding grounds. However, the ecology of bird migration suggests that the spring arrival of long‐distance migrants (such as trans‐Saharan birds) is more likely to be influenced by climate conditions in wintering areas given their direct impact on the onset of migration and its progression. We tested this hypothesis by analysing the first arrival dates (FADs) of six trans‐Saharan migrants (cuckooCuculus canorus, swiftApus apus, hoopoeUpupa epops, swallowHirundo rustica, house martinDelichon urbicaand nightingaleLuscinia megarhynchos), in a western Mediterranean area since from 1952 to 2003. By means of multiple regression analyses, FADs were analysed in relation to the monthly temperature and precipitation patterns of five African climatic regions south of the Sahara where species are thought to overwinter and from the European site from where FADs were collected. We obtained significant models for five species explaining 9–41% of the variation in FADs. The interpretation of the models suggests that: (1) The climate in wintering quarters, especially the precipitation, has a stronger influence on FADs than that in the species' potential European breeding grounds. (2) The accumulative effects of climate patterns prior to migration onset may be of considerable importance since those climate variables that served to summarize climate patterns 12 months prior to the onset of migration were selected by final models. (3) Temperature and precipitation in African regions are likely to affect departure decision in the species studied through their indirect effects on food availability and the build‐up of reserves for migration. Our results concerning the factors that affect the arrival times of trans‐Saharan migrants indicate that the effects of climate change are more complex than previously suggested, and that these effects might have an interacting impact on species ecology, for example by reversing ecological pressures during species' life cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.