Abstract

AbstractAgricultural soils contain large amounts of nitrogen (N), but only a small fraction is readily available to plants. Despite several methods developed to estimate the bioavailability of N, there is no consensus on which extraction methods to use, and which N pools are critically important. In this study, we measured six soil N pools from 20 farms, which were part of a multi‐year soil carbon sequestration on‐farm experiment (Carbon action, 2019–2023). The aim was to quantify the N pools and to evaluate if farming practices that aim to build soil carbon pools, also build bioavailable N pools. We also aimed to test if the smaller and rapidly changing N pools could serve as an indicator for the slower change in soil organic matter. The measured N pools decreased in size, when moving from total N (7700 ± 1500 kg/ha) to slowly cycling (Illinois Soil Nitrogen Test ISNT‐N: 1063 ± 220 kg/ha, autoclave citrate‐extracted ACE protein N: 633 ± 440 kg/ha), water‐soluble organic N (50 ± 17 kg/ha), potentially mineralizable N (33 ± 13 kg/ha) and finally readily plant available inorganic pools (nitrate and ammonium, total: 14 ± 8 kg/ha). In total, the measured pools covered only 18%–44% of total N, indicating a large unidentified N pool, which is either tightly bound to soil mineral fraction and not easily extractable or is bound to undecomposed plant residues and not hydrolysed by the methods. Of the large N pools (ISNT‐N, ACE protein and unidentified residual N), clay, carbon (C) and C:Clay ratios explained most of the variability (R2 = .90–.93), leaving a minor part of the variation to the management effect. A pairwise comparison of carbon farming and control plots concluded that farming practices had a small (3%–5%) but statistically significant (p < .05) effect on soil total N and ISNT‐N pools, and a moderate and significant effect (18%, p < .01) on potentially mineralizable N. The large variation in protein N, water‐soluble organic N and inorganic N reduced statistical significance, although individual C sequestration practices had large effects (−30% to +50%). In conclusion, carbon sequestration practices can build both slowly cycling N pools (ISNT) and increase the mineralisation rate of these pools to release plant available forms, resulting in an additional benefit to agriculture through reduced fertilizer application needs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call