Abstract

Abstract Numerical simulations are examined in order to determine the local mean flow response to the generation, propagation, and breakdown of two-dimensional mountain waves. Realistic and idealized cases are considered, and in all instances the pressure drag exerted by flow across an O(40 km) wide mountain fails to produced a significant net mean flow deceleration in the O(400 km) region surrounding the mountain. The loss of momentum in the local patches of decelerated flow that appear in regions of wave overturning directly above the mountain is approximately compensated by momentum gained in other nearby patches of accelerated flow. The domain-average mean flow deceleration in the O(400 km) domain is not determined solely by the divergence of the horizontally averaged momentum flux, 〈ρ¯u′w′〉, because differences in the upstream and downstream values of ρu2+p provide nontrivial contributions to the total domain-averaged momentum budget. As confirmed by additional simulations in an O(1000 km) wide perio...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.