Abstract

Some similarities exist between bacterial resistance to antibiotics and to biocides, and gram-negative bacteria that have developed resistance to cationic biocides may also be insusceptible to some antibiotics. Outer membrane changes are believed to be responsible for this non-specific increase in resistance. Efflux, another important resistance mechanism, is associated with the qacA/B gene system in staphylococci that confers low-level resistance to cationic agents including chlorhexidine salts and quaternary ammonium compounds. It has been proposed that the introduction into clinical practice of chlorhexidine and quaternary ammonium compounds has resulted in the selection of staphylococci containing qacA genes on multiresistance plasmids. A linkage between low-level resistance to triclosan and to antibiotics has recently been claimed to occur in Escherichia coli, with the bisphenol selecting for chromosomally-mediated antibiotic resistance. A key issue in many studies has been the use of biocides at concentrations significantly below those used clinically. It remains to be determined how an increase to low-level resistance to cationic biocides can be held responsible for the selection of antibiotic-resistant bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call