Abstract
To examine models of evolution for Coregonus from the Central Alpine region of Europe, 20 populations from nine lakes were assessed for variation at six microsatellite DNA loci. Patterns of variation were tested against three evolutionary models: phenotypic plasticity, multiple invasions of lakes by divergent forms, and within‐lake radiation of species flocks. All sympatric and all but one allopatric pairs of populations were significantly divergent in allele frequencies. Pairwise F‐statistics indicated reduced gene flow among phenotypically divergent sympatric populations. These results reject the hypothesis that within‐lake morphological and ecological diversity reflects phenotypic plasticity within a single gene pool. Genetic similarity was higher among forms within lakes than between populations of the same form in different lakes. Among‐lake divergence was primarily a product of allele size differences. Mantel tests contrasting patterns of genetic divergence against patterns predicted from the multiple invasions and species flocks models indicated that the latter is the best explanation of the observed genetic variation. Thus, reproductively isolated species diverged within lakes, with similar patterns repeatedly emerging among lakes. While this study argues for a particular mode of evolution in Central Alpine Coregonus, the taxonomy of these forms remains unresolved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.