Abstract

Annexins are physiologically important proteins that play a role in calcium buffering but also influence membrane structure, participate in Ca²⁺-dependent membrane repair events and in remodelling of the cytoskeleton. Thirty years ago several peptides isolated from lung perfusates, peritoneal leukocytes, neutrophiles and renal cells were proven inhibitory to the activity of phospholipase A₂. Those peptides were found to derive from structurally related proteins: annexins AnxA1 and AnxA2. These findings raised the question whether annexins may participate in regulation of the production of lipid second messengers and, therefore, modulate numerous lipid mediated signaling pathways in the cell. Recent advances in the field of annexins made also with the use of knock-out animal models revealed that these proteins are indeed important constituents of specific signaling pathways. In this review we provide evidence supporting the hypothesis that annexins, as membrane-binding proteins and organizers of the membrane lateral heterogeneity, may participate in lipid mediated signaling pathways by affecting the distribution and activity of lipid metabolizing enzymes (most of the reports point to phospholipase A₂) and of protein kinases regulating activity of these enzymes. Moreover, some experimental data suggest that annexins may directly interact with lipid metabolizing enzymes and, in a calcium-dependent or independent manner, with some of their substrates and products. On the basis of these observations, many investigators suggest that annexins are capable of linking Ca²⁺, redox and lipid signaling to coordinate vital cellular responses to the environmental stimuli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.