Abstract

Abstract. Agriculture is the main source of ammonia (NH3) in France, an important gaseous precursor of atmospheric particulate matter (PM). National and global emission inventories are known to have difficulty representing the large spatial and temporal variability inherent to atmospheric NH3. In this study, we compare NH3 emissions in France during spring 2011 from one reference inventory, the TNO inventory, and two alternative inventories that account in different manners for both the spatial and temporal variabilities of the emissions: (i) the NH3SAT satellite-derived inventory based on IASI NH3 columns and (ii) the CADASTRE-CIT inventory that combines NH3 emissions due to nitrogen fertilization calculated with the mechanistic model VOLT'AIR on the database of the CADASTRE_NH3 framework and other source emissions from the CITEPA. The total spring budgets, from March to May 2011, at the national level are higher when calculated with both alternative inventories than with the reference, the difference being more marked with CADASTRE-CIT. NH3SAT and CADASTRE-CIT inventories both yield to large NH3 spring emissions due to fertilization on soils with high pH in the northeastern part of France (65 and 135 kt NH3, respectively, vs. 48 kt NH3 for TNO-GEN), while soil properties are not accounted for by the TNO-GEN methodology. For the other parts of France, the differences are smaller. The timing of fertilization and associated ammonia emissions is closely related to the nitrogen requirements and hence the phenological stage of the crops, and therefore to the crop year's specific weather conditions. Maximum emissions are observed in March for 2011 for some regions for both alternative inventories, while April is the period with maximum emissions for the reference inventory regardless of the region or the year. Comparing the inventories at finer temporal resolutions, typically at daily scale, large differences are found. The convergence of alternative, independent and complementary methods on the spatiotemporal representation of the spring NH3 emissions, particularly over areas where the contribution of mineral fertilizer spreading to the spring budget is strong, encourages further developments in both prospective complementary directions, as this will help improve national NH3 emission inventories.

Highlights

  • France is a major crop producer and a major exporter of agricultural and food products

  • This study aims at assessing the potential contribution of better spatial and temporal representation of fertilization-related ammonia emissions to the quality of ammonia emission inventories

  • We focus on the temporal variability of the identified regions and discuss the agricultural practices that can influence the variability and down to which temporal resolution the comparison of the inventories is relevant

Read more

Summary

Introduction

France is a major crop producer and a major exporter of agricultural and food products. In 2014, it produced 2 %, 4 %, 5 %, 8 %, 8 % and 14 % of the global production of maize, sunflower, wheat, barley, rapeseed and sugar beet, respectively (Food and Agriculture Organization of the United Nations FAO; Schauberger et al, 2018). Through this food cultivation and due to animal husbandry, agriculture is the main source of ammonia (NH3) in the country. In order to limit air pollution, responsible for acidification and eutrophication, the new European National Emission Ceilings Directive 2016/2284, replacing the Directive 2001/81/EC, has set ambitious national reduction commitments for ammonia. Ammonia emissions have to be reduced by 19 % in 2030, compared with the 2005 levels (OJEU, 2016)

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call