Abstract
Widespread contamination of rice with arsenic (As) has revealed a major exposure pathway to humans. The present study aimed to investigate the effects of oxygen in the rhizosphere on phosphate (P) transporter (for arsenate transportation) expressions, on As and P accumulation and As speciation in four rice genotypes. Oxygenation marginally increased root and shoot length. Total As concentrations in rice roots were dramatically reduced following aeration compared to stagnant treatments (p<0.001). Aeration treatments significantly increased arsenate while reducing arsenite concentrations in roots (p<0.001). Root arsenite concentrations were 1.5-2.5 times greater in stagnant than in aeration treatments. Total P concentrations in rice roots were dramatically increased following aeration compared to stagnant treatments. The relative abundance of phosphate transporter (inorganic phosphate transporter and phosphate/H+ symporter family protein) expressions showed downregulation in aeration treatments, particularly for SY-9586, XWX-17, and XWX-12 in inorganic phosphate transporter expressions and XWX-17 in phosphate/H+ symporter family protein expression (p<0.05). The relative abundance of phosphate carrier protein expressions were relatively higher than the other phosphate transporters, showing upregulation in aeration treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.