Abstract

The phase transition of thermoresponsive poly(N-isopropylacrylamide) is studied under the influence of additives considered as model substances for drugs. A series of aromatic compounds with similar structures, mainly benzaldehydes, is chosen. The lower critical solution temperature (LCST) is determined by differential scanning calorimetry and 1H-NMR. All additives cause a down shift of the LCST, which depends on additive molecular structure and concentration. Since the LCST shifts are not correlated to hydrophobicity or solubility of the additive, the detailed substitution pattern is discussed as the controlling factor. The question whether LCST shifts can be explained by either the additives affecting the solvent quality or by specific interactions of additives with the polymer is addressed by LCST determination in dependence on polymer concentration. Though both factors are relevant, specific additive-polymer interactions are shown to play a major role in controlling the LCST.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.