Abstract

Despite the high technical relevance of early flame kernel development for the reduction of cycle-to-cycle variations in spark ignition engines, there is still a need for a better fundamental understanding of the governing in-cylinder phenomena in order to enable resilient early flame growth. To isolate the effects of small- and large-scale turbulent flow motion on the young flame kernel, a three-dimensional DNS database has been designed to be representative for engine part load conditions. The analysis is focussed on flame displacement speed and flame area in order to investigate effects of flame structure and flame geometry on the global burning rate evolution. It is shown that despite a Karlovitz number of up to 13, which is at the upper range of conventional engine operation, thickening of the averaged flame structure by small-scale turbulent mixing is not observed. After ignition effects have decayed, the flame normal displacement speed recovers the behavior of a laminar unstretched premixed flame under the considered unity-Lewis-number conditions. Run-to-run variations in the global heat release rate are shown to be primarily caused by flame kernel area dynamics. The analysis of the flame area balance equation shows that turbulence causes stochastic flame kernel area growth by affecting the curvature evolution, rather than by inducing variations in total flame area production by strain. Further, it is shown that in local segments of a fully-developed planar flame with similar surface area as the investigated flame kernels, temporal variations in flame area rate-of-change occur. Contrasting to early flame kernels, these effects can be exclusively attributed to curvature variations in negatively curved flame regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.