Abstract

This paper reports on a two-phase flow Direct Numerical Simulation (DNS) aimed at analyzing the resuspension of solid particles from a surface hit by a transonic jet inside a low pressure container. Conditions similar to those occurring in a fusion reactor vacuum vessel during a Loss of Vacuum Accident (LOVA) have been considered. Indeed, a deep understanding of the resuspension phenomenon is essential to make those reactors safe and suitable for a large-scale sustainable energy production. The jet Reynolds and Mach numbers are respectively set to 3300 and 1. The Thornton and Ning impact/adhesion model is adopted and improved. An advanced resuspension model, which takes into account the dynamics (rolling and slipping) of particles at the wall, is implemented. The use of this model combined with a DNS represents a great novelty in simulating the particle resuspension process. The particles initially deposited at the wall have constant density, whereas their diameters are drawn according to a log-normal distribution, with parameters obtained from experimental data. It has been found that the flow induced motion of wall deposited particles is highly linked with the instantaneous fluid structures and the resuspension phenomenon predominantly affects particles with the largest diameters. Moreover, the jet-deposit interaction is mostly confined within a circumference around the jet of radius approximately equal to the jet diameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call