Abstract

Direct Numerical Simulations (DNS) of spatially-developing turbulent boundary layers with prescribed moderate and strong adverse pressure (APG) gradients are performed. A method for prescribing realistic turbulent velocity inflow boundary conditions is employed based on the on the dynamic multi-scale approach proposed by [1] [2]; and, it is an extension of the rescaling-recycling method by [6]. Comparison with data from more costly DNS ([7][5]) yields accurate results. In addition, the dynamic multi-scale approach does not require lengthy computational domains as in [7] and [5]. Furthermore, it is shown that in APG flows the presence of a second outer peak in \(u{^{\prime +}_{rms}}\) is more pronounce than in ZPG flows. Additionally, the plateau between the inner and outer peaks suggests the presence of an overlap (i.e., meso-layer) in the mean velocity profile, as discussed in GC-97 [3]. Moreover, these outer peaks are also observed in the production of turbulence even at low Reynolds numbers. Finally, the mean velocity profiles in wall-units show that the wake region is magnified as the APG strengths increases. This suggests that the large scales in the outer flow dominate most of the boundary layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call