Abstract

Various direct numerical simulations (DNS) of turbulence are performed hitherto. In most of those DNS's, the mean flow is assumed to be steady. This is because the DNS of the turbulence with an unsteady mean flow requires more computational effort to obtain a stable statistical average. In the present study, DNS of turbulent channel flow driven by temporally-changing pressure gradient is performed. The pressure gradient is so determined that the bulk mean velocity averaged over one cycle is approximately equal to the one with a steady state Reynolds number of Reτs= 180. The each period is divided into twenty phases and statistical average is obtained for various turbulence statistics. Obtained turbulence statistics are compared with steady ones. Number of streamwise vortices decreases in the acceleration period while it increases in the deceleration one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.