Abstract
Direct numerical simulations were conducted of a fully turbulent canonical nozzle/jet configuration. For all cases, the target Reynolds number, based on the jet velocity and diameter, was specified as 7500 and the jet Mach number and coflow Mach number were varied. Turbulence statistics at the nozzle exit are shown to collapse with fully developed turbulent pipe flow profiles when using the wall shear-stress, and in the case of higher Mach number cases also the wall density, from the fully developed flow region upstream in the nozzle. Predictions of flow variables in the near-nozzle region obtained from asymptotic theory are found to agree qualitatively with Direct Numerical Simulation data. The data from the different cases are shown to collapse in the potential core region when scaling with the appropriate mixing layer parameter while further downstream the appropriate parameter is the non-dimensional local velocity excess. For all scalings investigated, including virtual-origin correction of the streamwise axis, the case with the highest coflow magnitude did not agree well with the other cases implying that self-similarity of coflowing jets is restricted to low coflow values. Finally, it is shown that the acoustic field is resolved by the simulations making the data suitable for subsequent aeroacoustic analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.