Abstract

DNS and RANS simulations were carried out for core-annular flow in a horizontal pipe and results were compared with experiments carried out with water and oil in our lab. In contrast to most existing studies for core-annular flow available in the literature, the flow annulus is not laminar but turbulent. This makes the simulations more challenging. As DNS does not contain any closure correlations, this approach should give the best representation of the flow (provided a sufficiently accurate numerical mesh and numerical method is used). Various flow configurations were considered, such as without gravity (to enforce an on-average concentric oil core) and with gravity (to allow for eccentricity in the oil core location). Both single-phase and two-phase conditions were considered; single-phase flow refers to the water annulus with imposed wavy wall, whereas two-phase flow includes the determination of the wavy interface. Mesh refinement was carried out to assess the numerical accuracy of the simulation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.