Abstract

A passive control approach (no external energy input) for an unsteady separated flow case was investigated numerically. A surface-mounted control fence was positioned upstream of a backward-facing step, and as an oncoming flow a thin and fully developed turbulent boundary layer with a thickness of δ/h = 0.8 was used. The objective of the passive control was to enhance the entrainment rate of the shear layer bounding the separation zone behind the step, thereby reducing the mean reattachment length,〈 X r0 〉. Direct Numerical Simulations (DNS) and Large-Eddy Simulations (LES) at Re h = 3000 (based on the step height, h, and the free stream velocity, U ∞) were carried out for the uncontrolled and the controlled flow case. The LES results were in good agreement with the DNS reference solutions. Adaptively controlled feedback simulations showed that a certain minimum distance between the step edge and the upstream position of the control fence is required to achieve a maximum reduction of the reattachment length.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call