Abstract

Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) compete for nitrate in natural and engineered environments. A known important factor in this microbial competition is the ratio of available electron donor and elector acceptor, here expressed as Ac/N ratio (acetate/nitrate-nitrogen). We studied the impact of the Ac/N ratio on the nitrate reduction pathways in chemostat enrichment cultures, grown on acetate mineral medium. Stepwise, conditions were changed from nitrate limitation to nitrate excess in the system by applying a variable Ac/N ratio in the feed. We observed a clear correlation between Ac/N ratio and DNRA activity and the DNRA population in our reactor. The DNRA bacteria dominated under nitrate limiting conditions in the reactor and were outcompeted by denitrifiers under limitation of acetate. Interestingly, in a broad range of Ac/N ratios a dual limitation of acetate and nitrate occurred with co-occurrence of DNRA bacteria and denitrifiers. To explain these observations, the system was described using a kinetic model. The model illustrates that the Ac/N effect and concomitant broad dual limitation range related to the difference in stoichiometry between both processes, as well as the differences in electron donor and acceptor affinities. Population analysis showed that the presumed DRNA-performing bacteria were the same under nitrate limitation and under dual limiting conditions, whereas the presumed denitrifying population changed under single and dual limitation conditions.

Highlights

  • Denitrification and Dissimilatory Nitrate Reduction to Ammonia (DNRA) are two microbial anaerobic respiration processes that compete for nitrate and nitrite in the environment

  • We showed a clear correlation between the Ac/N ratio and the prevalent dissimilatory nitrate reduction process in an open chemostat system using acetate as electron donor

  • The range of dual substrate limiting conditions can be explained as a result of both the stoichiometries of dissimilatory nitrate reduction to ammonium (DNRA) and denitrification and a higher affinity of the prevailing DNRA bacteria for nitrate and of the prevailing denitrifying bacteria for acetate

Read more

Summary

Introduction

Denitrification and Dissimilatory Nitrate Reduction to Ammonia (DNRA) are two microbial anaerobic respiration processes that compete for nitrate and nitrite in the environment. When nitrate is reduced by denitrification, the nitrogen is released in the atmosphere as dinitrogen gas, and traces of the gaseous intermediates nitric and nitrous oxide, while DNRA will retain the nitrogen in the habitat in the form of ammonium. The different fates of the nitrogen due to these two different dissimilatory processes can have important implications (Giblin et al, 2013). DNRA can be important for nitrogen conservation in ecosystems because the ammonium-ion is generally retained in soil and sediments by absorption to the negatively charged clay minerals and available for plant and microbial uptake. The nitrate and nitrite anions are lost due to leaching (Silver et al, 2001)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.