Abstract
In this paper, we come up with a novel speech enhancement method, which integrates nonnegative matrix factorization (NMF) and computational auditory scene analysis (CASA) using deep neural network (DNN). Firstly, we can obtain the basis matrices of speech and noise respectively via NMF and get the ideal ratio mask (IRM) that is based on CASA by using deep neural network. Then, a linear minimum mean square error (LMMSE) filter in fast Fourier transform (FFT) domain is constructed and transformed to the Gammatone domain. Finally, an integrated Wiener-like filter is obtained by combining the filter of NMF with the mask of CASA. By comparing with NMF and CASA methods, the experiments present the superiority of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.