Abstract

We present in this paper an efficient convolutional neural network (CNN) running on time-frequency image features for automatic sleep stage classification. Opposing to deep architectures which have been used for the task, the proposed CNN is much simpler However, the CNN's convolutional layer is able to support convolutional kernels with different sizes, and therefore, capable of learning features at multiple temporal resolutions. In addition, the 1-max pooling strategy is employed at the pooling layer to better capture the shift-invariance property of EEG signals. We further propose a method to discriminatively learn a frequency-domain filter bank with a deep neural network (DNN) to preprocess the time-frequency image features. Our experiments show that the proposed 1-max pooling CNN performs comparably with the very deep CNNs in the literature on the Sleep- EDF dataset. Preprocessing the time-frequency image features with the learned filter bank before presenting them to the CNN leads to significant improvements on the classification accuracy, setting the state- of-the-art performance on the dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.