Abstract

Facial expression recognition is a current research hotspot and can be applied to computer vision fields such as human-computer interaction and affective computing. The lack of diversity and category recognition information in the neural network input may affect the performance of the network, resulting in insufficient extraction of facial expression features. In order to address the above problems, a lightweight deep convolution neural network with convolution block attention module is proposed in this paper. The implementation of the lightweight DNN relies on the use of deep separable convolution and residual blocks. The combination of the convolution block attention module and the improved classification function can optimize the lightweight model. We use accuracy and confusion matrix to evaluate different models, ultimately achieving 71.5% and 99.5% accuracy on the Fer2013 and CK+ datasets respectively. The experimental results show that our model has good feature representation capabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.