Abstract

DNA methylation-related genes, including TET2, IDH2, and DNMT3A are highly frequently mutated in angioimmunoblastic T-cell lymphoma (AITL), an aggressive malignancy of T follicular helper (Tfh) cells associated with aberrant immune features. It has been shown that TET2 loss cooperates with RHOAG17V to promote AITL in mice but the functional role of DNMT3A mutations in AITL remains unclear. Here, we report that DNMT3AR882H, the most common mutation of DNMT3A in AITL, accelerates the development of Tet2-/-; RHOAG17V AITL in mice, indicated by the expansion of malignant Tfh cells and aberrant B cells, skin rash, and significantly shortened disease-free survival. To understand the underlying cellular and molecular mechanisms, we performed single-cell transcriptome analyses of lymph nodes of mice transplanted with Tet2-/-, Tet2-/-; RHOAG17V or DNMT3AR882H; Tet2-/-; RHOAG17V hematopoietic stem and progenitor cells. These single-cell landscapes reveal that DNMT3A mutation further activates Tfh cells and leads to rapid and terminal differentiation of B cells, probably through enhancing the interacting PD1/PD-L1, ICOS/ICOSL, CD28/CD86, and ICAM1/ITGAL pairs. Our study establishes the functional roles of DNMT3A mutation in AITL and sheds light on the molecular mechanisms of this disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.