Abstract

Sepsis is a global health care issue that affects millions of people. DNA methyltransferase I (DNMT1)-mediated DNA methylation is involved in a number of human diseases by affecting many types of cellular progression events. However, the role and underlying molecular mechanism of DNMT1 in development of sepsis remain largely unknown. Lipopolysaccharide (LPS) induced lung fibrosis in the sepsis mouse model, and DNMT1 was upregulated in lung tissues of a sepsis mouse model compared with lung tissues from control mice. Then, this study demonstrated that LPS induced the production of interleukin (IL)-7 and tumor necrosis factor (TNF)-α and promoted DNMT1 expression in primary type II alveolar epithelial cells (AECII cells). Knockdown of DNMT1 inhibited IL-7 and TNF-α secretion in AECII cells exposed to LPS. Further study demonstrated that DNMT1 repressed the expression of miR-130a in AECII cells with or without LPS exposure. Next, this study demonstrated that miR-130a inhibited ZEB1 expression in AECII cells exposed to LPS. Ultimately, this study revealed the role of the DNMT1/miR-130a/ZEB1 regulatory pathway in AECII cells exposed to LPS. Overall, our data revealed that LPS induced the secretion of inflammatory factors by modulating the DNMT1/miR-130a/ZEB1 regulatory pathway in AECII cells, thus providing a novel theoretical basis that might be beneficial for establishment of diagnostic and therapeutic strategies for sepsis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call