Abstract

IntroductionProliferation, migration and invasion of extravillous trophoblasts (EVTs) play an important role in the progression of preeclampsia (PE). The purpose of this study was to investigate the molecular mechanism by which DNA methylase regulates the transcription level of APLNR and affects the phenotypic function of EVTs. Materials and methodsPE mice model and H/R model in HTR8/Svneo cells were constructed. Clinical samples of normal pregnant women and PE patients were collected. Expression and methylation level of APLNR in vivo and in vitro were detected. ChIP-qPCR was used to detect the binding of DNA methyltransferase at the APLNR promoter. The expression of DNA methyltransferase 1 (DNMT1), NO and eNOS in vitro were detected. EVTs proliferation, migration and invasion in vitro were detected. ResultsIn placental tissues or HTR8/Svneo cells of the PE model group, the expression of APLNR was reduced and APLNR methylation level was up-regulated. There was no significant difference in the APLNR expression in placental tissues between normal pregnant women and PE patients. H/R conditions only promote the binding of DNMT1 at the APLNR promoter. DNMT1 interference decreased the enrichment degree of DNMT1 in APLNR promoter region and up-regulated the mRNA and protein levels of APLNR in vivo and in vitro. The activation of APLNR by Elabela (ELA) can promote eNOS transcription, thereby promoting cell proliferation and NO level, while eNOS inhibitor can reverse this effect. DNMT1 down-regulation inhibted APLNR methylation level, promoted eNOS transcription, and promoted EVTs proliferation, migration and invasion, which could be revised by the interference of APLNR. DiscussionDNMT1 promotes eNOS transcription by inhibting APLNR methylation level, and promotes EVTs proliferation, migration and invasion, thus providing a new and broad application prospect for PE treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.