Abstract

Toll-like receptor 4 (TLR4) plays a critical role in various human diseases, and was associated with pyroptotic cell death and inflammatory responses. DNA methylation, which has stable and reversible properties, has been reported to alter the expression of target genes, including TLR4. However, the role of methylated TLR4 in osteomyelitis (OM) and the underlying molecular mechanisms remain unclear. RNA sequencing was used to identify differentially expressed genes and associated signaling pathways. RT-qPCR, Western blot, emzyme-linked immunosorbent assay (ELISA), cell counting kit-8 (CCK-8) and LDH assay kit were used to detect mRNA and protein expression of relevant genes, cell viability and the LDH activity, respectively. TLR4 methylation was detected by methylation-specific PCR (MSP) and verified by Chromatin immunoprecipitation (ChIP). Here, we found that DNA methyltransferase-1 (DNMT1)-mediated TLR4 demethylation significantly suppressed lipopolysaccharides (LPS)-induced pyroptosis and inflammatory response by inhibiting the TLR4/nuclear transcription factor-kappa B (NF-κB) axis. First, we confirmed TLR4 as the study target by mRNA transcriptome sequencing analysis, and TLR4 was observably high-expressed in both OM patients and LPS-treated osteoblastic MC3T3-E1. Then, we found that downregulation of DNMT1 blocked TLR4 promoter methylation modification, resulting in upregulation of TLR4. Simultaneously, functional experiments indicated that suppression of TLR4 or overexpression of DNMT1 promoted cell proliferation and inhibited cell pyroptosis and inflammation in LPS-induced MC3T3-E1, while upregulation of TLR4 restored the effects of DNMT1 silencing on OM progression. In addition, TLR4 elevated phosphorylation of IκB-α and NF-κB p65 in the NF-κB signal pathway, and inhibition of TLR4 or the NF-κB inhibitor PDTC reversed the influence of inhibition of DNMT1. In conclusion, our study demonstrated that DNMT1-mediated TLR4 DNA methylation alleviated LPS-induced OM by inhibiting the NF-κB signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call