Abstract

ABSTRACTThe role and underlying mechanisms of DNA methylation in osteogenesis/chondrogenesis remain poorly understood. We here reveal DNA methyltransferase 1 (DNMT1), which is responsible for copying DNA methylation onto the newly synthesized DNA strand after DNA replication, is overexpressed in sponge bone of people and mice with senile osteoporosis and required for suppression of osteoblast (OB) differentiation of mesenchymal stem cells (MSCs) and osteoprogenitors. Depletion of DNMT1 results in demethylation at the promoters of key osteogenic genes such as RORA and Fgfr2, and consequent upregulation of their transcription in vitro. Mechanistically, DNMT1 binds exactly to the promoters of these genes and are responsible for their 5-mc methylation. Conversely, simultaneous depletion of RORA or Fgfr2 blunts the effects of DNMT1 silencing on OB differentiation, suggesting RORA or Fgfr2 may be crucial for modulating osteogenic differentiation downstream of DNMT1. Collectively, these results reveal DNMT1 as a key repressor of OB differentiation and bone formation while providing us a new rationale for specific inhibition of DNMT1 as a potential therapeutic strategy to treat age-related bone loss.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.