Abstract

BackgroundThe Dnd DNA degradation phenotype was first observed during electrophoresis of genomic DNA from Streptomyces lividans more than 20 years ago. It was subsequently shown to be governed by the five-gene dnd cluster. Similar gene clusters have now been found to be widespread among many other distantly related bacteria. Recently the dnd cluster was shown to mediate the incorporation of sulphur into the DNA backbone via a sequence-selective, stereo-specific phosphorothioate modification in Escherichia coli B7A. Intriguingly, to date all identified dnd clusters lie within mobile genetic elements, the vast majority in laterally transferred genomic islands.MethodologyWe organized available data from experimental and bioinformatics analyses about the DNA phosphorothioation phenomenon and associated documentation as a dndDB database. It contains the following detailed information: (i) Dnd phenotype; (ii) dnd gene clusters; (iii) genomic islands harbouring dnd genes; (iv) Dnd proteins and conserved domains. As of 25 December 2008, dndDB contained data corresponding to 24 bacterial species exhibiting the Dnd phenotype reported in the scientific literature. In addition, via in silico analysis, dndDB identified 26 syntenic dnd clusters from 25 species of Eubacteria and Archaea, 25 dnd-bearing genomic islands and one dnd plasmid containing 114 dnd genes. A further 397 other genes coding for proteins with varying levels of similarity to Dnd proteins were also included in dndDB. A broad range of similarity search, sequence alignment and phylogenetic tools are readily accessible to allow for to individualized directions of research focused on dnd genes.Conclusion dndDB can facilitate efficient investigation of a wide range of aspects relating to dnd DNA modification and other island-encoded functions in host organisms. dndDB version 1.0 is freely available at http://mml.sjtu.edu.cn/dndDB/.

Highlights

  • The Dnd DNA degradation phenotype was observed during normal and pulsed-field gel electrophoresis of genomic DNA from Streptomyces lividans strain 66 [1]

  • Conclusion: dndDB can facilitate efficient investigation of a wide range of aspects relating to dnd DNA modification and other island-encoded functions in host organisms. dndDB version 1.0 is freely available at http://mml.sjtu.edu.cn/dndDB/

  • In 2005, the five-gene dndABCDE cluster responsible for this phenotype was identified in S. lividans [2]

Read more

Summary

Introduction

The Dnd DNA degradation phenotype was observed during normal and pulsed-field gel electrophoresis of genomic DNA from Streptomyces lividans strain 66 [1]. More recently the dnd cluster was shown to mediate the incorporation of sulphur into the DNA backbone via a sequenceselective, stereo-specific phosphorothioate modification in E. coli B7A [3]. By using high-performance liquid chromatography and mass spectrometry, the chemical structure of phosphorothioated DNA was determined revealing a sulfur atom in place of one of the nonbridging oxygen atoms on a DNA backbone-borne phosphate group. To our knowledge, this was the first report of natural modification of the DNA backbone itself and sets it apart from welldocumented DNA methylation and other changes to DNA bases. The dnd cluster was shown to mediate the incorporation of sulphur into the DNA backbone via a sequence-selective, stereo-specific phosphorothioate modification in Escherichia coli B7A. To date all identified dnd clusters lie within mobile genetic elements, the vast majority in laterally transferred genomic islands

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.