Abstract

Amyloid-β oligomer has been considered as a promising molecular biomarker for the diagnosis of Alzheimer's disease due to their significant neural synapse toxicity. Therefore, it is essential to create an easy approach for the selective detection of Amyloid-β oligomer that has high sensitivity and cheap cost. In this work, we developed an innovative enzyme-free electrochemical aptasensor based on the DNAzyme-driven DNA bipedal walker tactics for sensing Amyloid-β oligomer. Bipedal DNA walkers demonstrate a wider walking region, better walking kinetics, and higher amplification effectiveness than typical DNA walkers. The Mg2+-dependent DNAzyme drove the DNA walker, and the binding-induced DNA walker can sequentially shear MBs and form MB fragment structure. Finally, the detection probes modified AgNPs hybridized with the MB fragment structure, resulting in the multiplication of AgNPs on the electrode surface. Electrochemical stripping of AgNPs was used to test the performance of the obtained electrochemical sensor. In particular, a low detection limit of 5.94 fM and a wide linear range of 0.01 pM–0.1 nM were attained. The detection of Amyloid-β oligomer in human serum was then carried out using this bipedal DNA walker biosensor, which shown good selectivity and outstanding reproducibility, indicating its usefulness in bioanalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.