Abstract

A novel DNAzyme molecular beacon (DNAzymeMB) strategy was developed for target-induced signal-amplifying colorimetric detection of target nucleic acids. The DNAzymeMB, which exhibits peroxidase activity in its free hairpin structure, was engineered to form a catalytically inactive hybrid through hybridization with a blocker DNA. The presence of target DNA leads to dissociation of the DNAzymeMB from the inactive hybrid through hybridization with the blocker DNA. This process results in recovery of the catalytically active DNAzymeMB, which can catalyze a colorimetric reaction that signals the presence of the target DNA. In addition, a primer was rationally designed to anneal to the blocker DNA of the blocker/target DNA duplex and displace the bound target DNA during the extension reaction. The released target DNA triggers the next cycle involving hybridization with blocker DNA, DNAzymeMB dissociation, primer extension, and target displacement. This unique amplifying strategy leads to the generation of multiple numbers of active DNAzymeMB molecules from a single target molecule and gives a detection limit down to 1 pM, a value that is nearly 3 or 5 orders of magnitude lower than those of previously reported DNAzyme molecular beacon-based DNA detection methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.