Abstract

Monitoring Zn2+ in living cells is critical for fully elucidating the biological process of apoptosis. However, the quantitative intracellular sensing of Zn2+ using DNAzyme remains challenging because of issues related to penetration of the signal through tissue, targeted cellular uptake and activation, and susceptibility toward enzymatic degradation. In this study, we developed a novel phosphate ion-activated DNAzyme-metal-organic frameworks (MOFs) nanoprobe for two-photon imaging of Zn2+ in living cells and tissues. The design of this nanoprobe involved the loading of a Zn2+-specific, RNA-cleaving DNAzyme onto the MOFs through strong coordination between the phosphonate O atoms of the DNAzyme backbone and Zr atoms in the MOFs. This coordination restrained the extracellular activity of DNAzyme; however, after cell entry, the DNAzyme was released from the MOFs through a competitive binding by the phosphate ions present at a high intracellular concentration. Following their release, the two-photon (TP) fluorophore-labeled substrate strands of DNAzyme were cleaved with the aid of Zn2+, which resulted in a strong fluorescence signal. The incorporation of a TP fluorophore into the nanoprobe facilitated near-infrared excitation, which allowed the highly sensitive and specific imaging of Zn2+ in living cells and tissues at greater depths than possible previously. The TP-DNAzyme-MOFs nanoprobe achieved a low detection limit of 3.53 nM, extraordinary selectivity toward Zn2+, and a tissue signal penetration of 120 μm. More importantly, this nanoprobe was successfully used to monitor cell apoptosis, and this application of the DNAzyme-MOFs probe holds great potential for future use in biological studies and medical diagnostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.