Abstract

Since the first DNA vaccine studies were done in the 1990s, thousands more studies have followed. Here we report the development and analysis of DNAVaxDB (http://www.violinet.org/dnavaxdb), the first publically available web-based DNA vaccine database that curates, stores, and analyzes experimentally verified DNA vaccines, DNA vaccine plasmid vectors, and protective antigens used in DNA vaccines. All data in DNAVaxDB are annotated from reliable resources, particularly peer-reviewed articles. Among over 140 DNA vaccine plasmids, some plasmids were more frequently used in one type of pathogen than others; for example, pCMVi-UB for G- bacterial DNA vaccines, and pCAGGS for viral DNA vaccines. Presently, over 400 DNA vaccines containing over 370 protective antigens from over 90 infectious and non-infectious diseases have been curated in DNAVaxDB. While extracellular and bacterial cell surface proteins and adhesin proteins were frequently used for DNA vaccine development, the majority of protective antigens used in Chlamydophila DNA vaccines are localized to the inner portion of the cell. The DNA vaccine priming, other vaccine boosting vaccination regimen has been widely used to induce protection against infection of different pathogens such as HIV. Parasitic and cancer DNA vaccines were also systematically analyzed. User-friendly web query and visualization interfaces are available in DNAVaxDB for interactive data search. To support data exchange, the information of DNA vaccines, plasmids, and protective antigens is stored in the Vaccine Ontology (VO). DNAVaxDB is targeted to become a timely and vital source of DNA vaccines and related data and facilitate advanced DNA vaccine research and development.

Highlights

  • A DNA vaccine is a bacterial DNA plasmid constructed to express an encoded protein or peptide antigen(s), which is administered in vivo and able to induce preventive or therapeutic antigen-specific immune response against a specific disease or infection

  • Over 400 DNA vaccines containing over 370 protective antigens from over 90 infectious and non-infectious diseases have been curated in DNAVaxDB

  • While extracellular and bacterial cell surface proteins and adhesin proteins were frequently used for DNA vaccine development, the majority of protective antigens used in Chlamydophila DNA vaccines are localized to the inner portion of the cell

Read more

Summary

Introduction

A DNA vaccine is a bacterial DNA plasmid constructed to express an encoded protein or peptide antigen(s), which is administered in vivo and able to induce preventive or therapeutic antigen-specific immune response against a specific disease or infection. The protective protein antigen encoded by a gene in a DNA vaccine can be degraded into peptides by antigen presenting cells. If the DNA vaccine is taken up by muscle cells, the muscle cells can transfer the expressed protein to the antigen presenting cells to stimulate the T cells. DNA vaccines can stimulate antibody responses through antigen recognition by B cells [1]. DNA vaccines allow for focused immunity on the antigen of interest and have the ability to induce natural, longlasting, and varied immune responses in vivo

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call