Abstract
INTRODUCTIONIdentification of active gene regulatory elements is a key to understanding transcriptional control governing biological processes such as cell-type specificity, differentiation, development, proliferation, and response to the environment. Mapping DNase I hypersensitive (HS) sites has historically been a valuable tool for identifying all different types of regulatory elements, including promoters, enhancers, silencers, insulators, and locus control regions. This method utilizes DNase I to selectively digest nucleosome-depleted DNA (presumably by transcription factors), whereas DNA regions tightly wrapped in nucleosome and higher-order structures are more resistant. The traditional low-throughput method for identifying DNase I HS sites uses Southern blots. Here, we describe the complete and improved protocol for DNase-seq, a high-throughput method that identifies DNase I HS sites across the whole genome by capturing DNase-digested fragments and sequencing them by high-throughput, next-generation sequencing. In a single experiment, DNase-seq can identify most active regulatory regions from potentially any cell type, from any species with a sequenced genome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.