Abstract

A new Escherichia coli mutant named dnaR, which was temperature sensitive in initiation of DNA replication, has been characterized through identification of the mutant gene. A 1.65 x 10(3) base-pair chromosomal DNA fragment isolated from wild-type cells, but not the corresponding fragment from the dnaR mutant, exhibited an activity that reversed temperature-sensitive growth of the mutant. The DNA fragment was found to include the entire prs-coding sequence and specify a 34,000 M(r) protein with phosphoribosylpyrophosphate synthetase activity. The dnaR mutation resided within the prs-coding segment and made the synthetase thermolabile. The coding segment for the dnaR product was determined, by introduction of various mutations into the cloned fragment, to be the same as that for the synthetase. The dnaR function of the prs gene product in DNA replication is discussed on the basis of an observation that thermal treatment of the dnaR mutant caused a delay in initiation of chromosome replication after the downshift, despite the presence of the synthetase activity at the preheat level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.