Abstract

AbstractLipids are important building blocks in cellular compartments, and therefore their self‐assembly into well‐defined hierarchical structures has gained increasing interest. Cationic lipids and unstructured DNA can co‐assemble into highly ordered structures (lipoplexes), but potential applications of lipoplexes are still limited. Using scaffolded DNA origami nanostructures could aid in resolving these drawbacks. Here, we have complexed DNA origami together with a cationic lipid 1,2‐dioleoly‐3‐trimethylammonium‐propane (DOTAP) and studied their self‐assembly driven by electrostatic and hydrophobic interactions. The results suggest that the DNA origami function as templates for the growth of multilamellar lipid structures and that the DNA origami are embedded in the formed lipid matrix. Furthermore, the lipid encapsulation was found to significantly shield the DNA origami against nuclease digestion. The presented complexation strategy is suitable for a wide range of DNA‐based templates and could therefore find uses in construction of cell‐membrane‐associated components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.