Abstract
A new type of rapid, highly sensitive, and selective fluorescence turn-on assay for detection of cysteine and histidine using a DNA/ligand/ion ensemble is developed. This assay is based on the highly specific interaction between the amino acids and the metal ions and the strong fluorescence thiazole orange (TO)/DNA probe in a competition assay format. The resulting high sensitivity and selectivity for cysteine and histidine was achieved by changing the metal ions. The system is simple in design and fast in operation and is more convenient and promising than other methods. The novel strategy eliminated the need of organic cosolvents, enzymatic reactions, separation processes, chemical modifications, and sophisticated instrumentations. The detection and discrimination process can be seen with the naked eye under a hand-held UV lamp and can be easily adapted to automated high-throughput screening. The detection limit of this method is lower than or at least comparable to previous fluorescence-based methods. The dynamic range of the sensor can be tuned simply by adjusting the concentration of metal ions. Importantly, the protocol offers high selectivity for the determination of cysteine among amino acids found in proteins and in serum samples. The assay shows great potential for practical application as a disease-associated biomarker and will be needed to satisfy the great demand of amino acid determination in fields such as food processing, biochemistry, pharmaceuticals, and clinical analysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.