Abstract

DNAJC5 (DnaJ heat shock protein family (Hsp40) member C5), also known as cysteine tandem protein (CSPα), is important for maintaining the normal function of nerve tissues, but its oncogenic function remains unknown. Here, we report a unique mechanism underlying the oncogenic function of DNAJC5. DNAJC5 protein expression is highly detectable in human hepatocellular carcinoma (HCC) tissues and is strongly related to a poor prognosis among HCC patients. DNAJC5 overexpression promotes HCC cell proliferation and reduced the ratio of cells in G1 phase of the cell cycle. Furthermore, DNAJC5 interacts with SKP2 and enhances the degradation of p27 (a cyclin-dependent kinase inhibitor1B) by promoting formation of the SKP2-p27 complex. In contrast, DNAJC5 knockdown rescues the SKP2-mediated decrease in p27 protein levels. These results reveal that the DNAJC5-SKP2-p27 pathway is a novel mechanism for the oncogenic function of DNAJC5 in HCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call