Abstract

Numerous studies have documented that the interaction of viral and cellular proteins is essential in the viral life cycle. In our previous study, to screen cellular proteins that take part in the life cycle of JEV, cellular proteins that interacted with JEV NS3 were identified by Co-immunoprecipitation coupled with mass spectrometry analysis (Co-IP-MS), the results showed that ILF2, DnaJA1, DnaJA2, CKB, TUFM, and PABPC1 that putatively interact with NS3. Another candidate protein, DnaJA2, which interacted with JEV NS3 protein, was selected for further study. Overexpression of DnaJA2 increased JEV infection. Conversely, the knockdown of DnaJA2 suppressed JEV infection. Furthermore, DnaJA2 interacted with NS5 besides NS3 and colocalized with viral dsRNA. Additionally, the level of viral NS3 protein expression was higher in cells overexpressing DnaJA2 than in cells with empty vector expression, whereas DnaJA2 knockdown resulted in NS3 protein degradation, which was subsequently restored by MG132 treatment. Further analysis revealed that the C-terminal of DnaJA2 was a critical domain for interaction with NS3 and promoted JEV infection. Collectively, our study identified DnaJA2 as an essential host factor required for JEV infection, potentially representing a novel therapeutic target for the development of antiviral therapies against JEV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call