Abstract
DNAJA1 is a member of type I DnaJ proteins, which is essential for spermatogenesis and male fertility. However, its expression pattern in the testes and its impact on spermatogenesis remains unclear. Our study aimed to elucidate the mechanism of action of DNAJA1. We employed DNAJA1 knockout mice in this study. Western blotting and immunofluorescence analysis were conducted to determine the protein abundance of DNAJA1 in testes at various developmental stages. Our results revealed that DNAJA1 is predominantly expressed in the testes, and its knockout leads to complete infertility in male mice. We observed that DNAJA1 protein levels increased on postnatal days 14, 21, and 28, peaking on postnatal day 35 in mice. Immunofluorescence staining indicated that DNAJA1 expression varies across different stages of the spermatogenesis cycle. Additionally, DNAJA1 was absent in epididymal sperm. In early- and mid-stage tubules, DNAJA1 protein distribution was co-localized with residual bodies in elongating spermatids. Furthermore, we found that DNAJA1 knockout significantly reduced protein polyubiquitination in the testis. Analysis of the GEO database showed that DNAJA1 levels were significantly decreased in semen samples from subjects with teratozoospermia, asthenozoospermia, and impaired spermatogenesis. Our findings suggest that DNAJA1 is an essential protein for spermatogenesis, and its deletion reduces protein polyubiquitination in the testis, ultimately resulting in infertility and spermatogenesis defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.