Abstract

In this paper, we propose a new approach of network performance analysis, which is based on our previous works on the deterministic network analysis using the Gaussian approximation (DNA-GA). First, we extend our previous works to a signal-to-interference ratio (SIR) analysis, which makes our DNA-GA analysis a formal microscopic analysis tool. Second, we show two approaches for upgrading the DNA-GA analysis to a macroscopic analysis tool. Finally, we perform a comparison between the proposed DNA-GA analysis and the existing macroscopic analysis based on stochastic geometry. Our results show that the DNA-GA analysis possesses a few special features: (i) shadow fading is naturally considered in the DNAGA analysis; (ii) the DNA-GA analysis can handle non-uniform user distributions and any type of multi-path fading; (iii) the shape and/or the size of cell coverage areas in the DNA-GA analysis can be made arbitrary for the treatment of hotspot network scenarios. Thus, DNA-GA analysis is very useful for the network performance analysis of the 5th generation (5G) systems with general cell deployment and user distribution, both on a microscopic level and on a macroscopic level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.