Abstract
In our previous study, we identified four chromatographically distinct DNA-dependent ATPases, B, C1, C2, and C3, in mouse FM3A cells (Tawaragi, Y., Enomoto, T., Watanabe, Y., Hanaoka, F., and Yamada, M. (1984) Biochemistry 23, 529-533). The DNA-dependent ATPase C1 has been purified and characterized in detail. A divalent cation and a polynucleotide cofactor were required for the ATPase activity. Poly(dT), single-stranded circular DNA, and heat-denatured DNA were very effective. Almost no ATPase activity was observed with S1 nuclease-treated native DNA. ATPase C1 hydrolyzed ATP only among the ribo- and deoxyribonucleoside triphosphates tested, and this fact distinguished ATPase C1 from ATPases B, C2, and C3, because the latter enzymes are capable of hydrolyzing both ATP and dATP. The purified DNA-dependent ATPase C1 fraction was shown to have a DNA helicase activity that was dependent on hydrolysis of ATP. The helicase activity and DNA-dependent ATPase activity cosedimented at 5.2 S on glycerol gradient centrifugation. Both activities showed similar preferences for nucleoside 5'-triphosphates and similar requirements for divalent cations. The DNA helicase activity was inhibited by the addition of single-stranded DNAs that served as cofactor for the ATPase activity. The efficiency of a single-stranded DNA to inhibit DNA helicase activity correlated well with the capacity of the DNA to serve as cofactor for DNA-dependent ATPase activity. The helicase was shown to migrate along the DNA strand in the 5' to 3' direction, which is the same direction of migration of the mouse DNA helicase B (Seki, M., Enomoto, T., Yanagisawa, J., Hanaoka, F., and Ui, M. (1988) Biochemistry 27, 1766-1771).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.