Abstract

Layer-by-layer (LbL)-assembled multilayer thin films of deoxyribonucleic acid (DNA), chitosan (CHI) and montmorillonite (MMT) were studied in an effort to produce fully renewable, bio-based, fire-retardant coatings for flexible polyurethane foam. The polyurethane foam (PUF) biocoatings constructed of ten bilayers (BLs) of CHI/DNA+MMT (16·2 % mass), ten trilayers of CHI/MMT/DNA (8·1 % mass) and five quadlayers of CHI/DNA/CHI/MMT (4·9 % mass) all resulted in a significant reduction in critical flammability metrics, peak heat release rate (pHRR) and average HRR (aHRR). The mix BL, CHI/DNA+MMT, is the best formulation as it resulted in the greatest flammability reduction (51% pHRR and 81% aHRR) with the fastest biocoating growth and the least amount of preparation and waste. This DNA- and MMT-based biocoating is the greatest flammability reduction of PUF reported to date using the LbL process. Constructed of bio-based and non-toxic materials combined with the fast-growing BL approach, which has minimal waste, this is presumably the most environmental and bio-friendly fire-retardant LbL coating on flexible polyurethane foam reported. This article contains supporting information that will be made available online once the issue is published.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.