Abstract

With the invention of the DNA origami technique, DNA self-assembly has reached a new level of sophistication. DNA can now be used to arrange molecules and other nanoscale components into almost arbitrary geometries-in two and even three dimensions and with nanometer precision. One exciting prospect is the realization of dynamic systems based on DNA, in which chemical reactions are precisely controlled by the spatial arrangement of components, ultimately resulting in nanoscale analogs of molecular assembly lines or 'nanofactories'. This review will discuss recent progress toward this goal, ranging from DNA-templated synthesis over artificial DNA-based enzyme cascades to first examples of 'molecular robots'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.