Abstract

Mutations in the gene for the conserved, essential nuclease-helicase Dna2 from the yeast Saccharomyces cerevisiae were found to interact genetically with POL1 and CTF4, which encode a DNA Polymerase alpha subunit and an associated protein, suggesting that Dna2 acts in a process that involves Pol alpha. DNA2 alleles were isolated that cause either temperature sensitivity, sensitivity to alkylation damage, or both. The alkylation-sensitive alleles clustered in the helicase domain, including changes in residues required for helicase activity in related proteins. Additional mutations known or expected to destroy the ATPase and helicase activities of Dna2 were constructed and found to support growth on some media but to cause alkylation sensitivity. Only damage-sensitive alleles were lethal in combination with a ctf4 deletion. Full activity of the Dna2 helicase function is therefore not needed for viability, but is required for repairing damage and for tolerating loss of Ctf4. Arrest of dna2 mutants was RAD9 dependent, but deleting this checkpoint resulted in either no effect or suppression of defects, including the synthetic lethality with ctf4. Dna2 therefore appears to act in repair or lagging strand synthesis together with Pol alpha and Ctf4, in a role that is optimal with, but does not require, full helicase activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.