Abstract

Delivery of antigens by injection of the encoding DNA allows access to multiple antigen-presenting pathways. Knowledge of immunological processes can therefore be used to modify construct design to induce selected effector functions. Expression can be directed to specific intracellular sites, and additional genes can be fused or codelivered to amplify responses. Therapeutic vaccination against cancer adds a requirement to overcome tolerance and to activate a weakened immune repertoire. Induction of CD4(+) T helper cells is critical for both antibody and T cell effector responses. To activate immunity against tumor antigens, we fused the tumor-derived sequences to genes encoding microbial proteins. This strategy engages T helper cells from the large antimicrobial repertoire for linked help for inducing antibody against cell-surface tumor antigens. The principle of linked T cell help also holds for induction of epitope-specific antitumor CD8(+) T cells, but the microbial sequence has to be minimized to avoid competition with tumor antigens. Epitope-specific DNA vaccination leads to powerful antitumor attack and can activate immunity from a profoundly tolerized repertoire. Vaccine designs validated in preclinical models are now in clinical trial with immune responses detected against both tumor antigens and fused microbial antigens. DNA priming is highly efficient, but boosting may benefit from increased antigen expression. Physical methods including electroporation provide increased expression without introducing additional competing antigens. A wide range of cancers can be targeted, and objective assays of response will determine efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.