Abstract

Flagellin’s potential as a vaccine adjuvant has been increasingly explored over the last three decades. Monomeric flagellin proteins are the only known agonists of Toll-like receptor 5 (TLR5). This interaction evokes a pro-inflammatory state that impacts upon both innate and adaptive immunity. While pathogen associated molecular patterns (PAMPs) like flagellin have been used as stand-alone adjuvants that are co-delivered with antigen, some investigators have demonstrated a distinct advantage to incorporating antigen epitopes within the structure of flagellin itself. This approach has been particularly effective in enhancing humoral immune responses. We sought to use flagellin as both scaffold and adjuvant for HIV gp41 with the aim of eliciting antibodies to the membrane proximal external region (MPER). Accordingly, we devised a straightforward step-wise approach to select flagellin-antigen fusion proteins for gene-based vaccine development. Using plasmid DNA vector-based expression in mammalian cells, we demonstrate robust expression of codon-optimized full length and hypervariable region-deleted constructs of Salmonella enterica subsp. enterica serovar Typhi flagellin (FliC). An HIV gp41 derived sequence including the MPER (gp41607–683) was incorporated into various positions of these constructs and the expressed fusion proteins were screened for effective secretion, TLR5 agonist activity and adequate MPER antigenicity. We show that incorporation of gp41607–683 into a FliC-based scaffold significantly augments gp41607–683 immunogenicity in a TLR5 dependent manner and elicits modest MPER-specific humoral responses in a mouse model.

Highlights

  • Despite the tremendous success generated by an empiric approach to vaccine development, eliciting robust and long-lasting protective immunity to certain pathogens remains challenging [1,2]

  • The magnitude, longevity or quality of the immune response to such antigens has been improved by using adjuvants, the mechanism of adjuvant function has been ill-defined for most adjuvants [10,11]

  • Insertion of a gp41-derived sequence at different positions within FliC led to a broad spectrum of outcomes with regard to secretion and agonist activity. Utilizing this multi-modal process, we selected a promising vaccine candidate that fulfilled all our screening criteria. We demonstrate that this FliC-HIV gp41 DNA vaccine candidate was highly immunogenic relative to a DNA vaccine encoding gp41 alone, eliciting modest

Read more

Summary

Introduction

Despite the tremendous success generated by an empiric approach to vaccine development, eliciting robust and long-lasting protective immunity to certain pathogens remains challenging [1,2]. While live attenuated virus vaccines have remarkable efficacy, this is not a solution for all pathogens either because they cannot be safely attenuated or because natural infection does not confer protective immunity [2,3,4,5,6,7,8,9]. Purified protein or recombinant subunit vaccines have provided a way forward in some instances, the immunogenicity of such antigens is often poor or vaccination does not generate the type of immune response required for protection [10,11]. Viruses 2018, 10, x does not generate the type of immune response required for protection [10,11].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call